Physics prospects at the LHeC

EINN09 workshop, 29 Sep 2009, Milos

Olaf Behnke (DESY)

Need for LHeC

- 27.5 GeV x 920 GeV ep HERA
- with integrated $L\sim0.5$ fb⁻¹ was a
- > high precision machine for QCD
- > modest precision machine for electroweak
 physics

Where could we go with a $20-150 \text{ GeV x 7 TeV } e^{\pm}p$, also eA collider

with integrated L~1-10 fb⁻¹ ?

Content of this • Inclusive alk (NC) and charged currents (CC) for electroweak physics and PDFs

• $o(\alpha_s)$ processes, F_2 scaling violations, jets, charm, beauty -> precision α_{s} and $g(\mathbf{x})$

- low x domain:
 - Inclusive DIS in ep a nuclear PDFs, saturati
 - 10 • Diffraction: Vector n. inclusive processes

Saturation

- High energies frontier:
 - SM Higgs production
 - New physics: Leptoquarks

Thanks especially to the following persons for providing talk material such as slides:

- Max Klein

- (General)
- Alessandro Pollini
- Claire Gwenlan
- Paul Newman
- Uta Klein
- Emmanuelle Perez
- (Detector)
 (Pdf and electroweak fit)
 (Low x and diffraction)
- (Higgs)
- (Leptoquarks)

Classical working horses in DIS

New since spring 2009: LHeC Pseudodata available (M. Klein)

Simulated Default Scenarios, April 2009

http://hep.ph.liv.ac.uk/~mklein/simdis09/Ihecsim.Dmp.CC, readfirst							Ma	ax	Klein,	
config.	E(e)	E(N)	Ν	$\int L(e^{+})$	∫L(e ⁻)	Pol	L/10 ³² P/	ΜW	yea	rs type
А	20	7	р	1	1	-	1	10	1	SPL
В	50	7	р	50	50	0.4	25	30	2	RR hiQ ²
С	50	7	р	1	1	0.4	1	30	1	RR lo x
D	100	7	р	5	10	0.9	2.5	40	2	LR
Е	150	7	p	3	6	0.9	1.8	40	2	LR
F	50	3.5	D	1	1		0.5	30	1	eD
G	50	2.7	Pb	0.1	0.1	0.4	0.1	30	1	ePb
Н	50	1	р		1		25	30	1	lowEp

Not simulated

Systematic error calculation for inclusive NC & CC pseudodata: assumed uncertainties and effects on xsecs

E_e=100 GeV E_p=7000 GeV

The Detector 'that should do it': - Low Lumi (Low Q²) Setup

- Solenoid surrounding the HAC modules
- -Outer detectors (HAC tailcatcher/muon detectors not shown)

to be discussed: very forward detector setup (proton taggers)

NC - events

CC - events

NLO QCD and electroweak fit Claire Gwenlan

Study presented here is based on new **ZEUS NLO QCD fit** to HERA-I and HERA-II data

LHeC NC/CC simulated data added to this in a **combined fit** for the PDFs and electroweak parameters

Making use of Max pseudodata

ZEUS09 fit (c.f. central values of HERA-I fit)

13

Claire Gwenlan

Fermion couplings to Z boson

Proton PDFs

Claire Gwenlan

$Q^2 = 100 \text{ GeV}^2$

scenario D

» <u>only</u> PDF parameters free (LHeC NC and CC e[±]p included)

Looks very promising, model and parameterisation uncertainties to be studied

16

Light Quark Distributions

d and u at high x: a longstanding puzzle NC/CC: free of HT, nuclear corrections. Essential for predictions at high x

LHeC is an electroweak machine. e.g.: Charge asymmetry in NC measures valence quarks down to x ~10⁻³ at high Q²

QuickTime[™] and a decompressor are needed to see this picture.

Single c Quark Production in CC -> measure s(x,Q2)

t measurements of s and sbar densities 18 in the

d

pro

Strong Coupling Constant from inclusive DIS-

(sensitivity mainly from dF2/dln(Q2)

Simulation of s measurement at LHeC

000000

s

strong

1/

QuickTime[™] and a decompressor are needed to see this picture.

MSSM - B.Allnach et al, hep-ex/0403133

QuickTime[™] and a decompressor are needed to see this picture.

$O(\alpha_{\rm s})$ processes: Jets

Joerg Behr

Photoproduction

Claudia Glasman

QuickTime[™] and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture.

Reach \Rightarrow ales up to 2m_top where change of $1/\alpha_s$ slope is e

QuickTime™ and a decompressor are needed to see this picture.

> From Chris Quiggs talk: "Particle physics & LHeC Divonne 1.9.09

Пq DT0 \sim 0 \sim LESL

ې ۲

D(X,Q) IIOM LARC GOES LO

LHeC total cross sections (MC simulated)

Entering the mysterious world of low x physics

Low-x Physics and Non-linear Evolution

 Somewhere & somehow, the low x growth of cross sections must be tamed to satisfy unitarity ... non-linear effects

• Usually characterised in terms of an x dependent "saturation scale", $Q_s^2(x)$, to be determined experimentally

Going beyond HERA with Inclusive LHeC Data

Enhance target `blackness' by:

1) Probing lower x at fixed Q^2 in ep

2) Increasing target matter in eA ... target density ~ $A^{1/3}$ ~ 6 for Pb

Basic Inclusive Kinematics / Acceptance

Access to Q²=1 GeV² in ep mode for all x > 5 x 10⁻⁷ IF we have acceptance to 179° (and @ low E_e')

Nothing fundamentally new in LHeC low x physics with $\theta_{\rm e}{<}170^{\circ}$

... luminosity in all scenarios ample for most low x processes

? Nothing sacred about 1° or 10°
... beyond 1° would be great!
... in between would need³²study

Deep Inelastic Scattering off Nuclei (D,A)

LHeC extends kinematic range of partonic structure of nuclei by 3-4 orders of magnitude.

It accesses saturation effects at low x in DIS region ("beyond unitarity")

eRHIC with nuclei could be complementary.

LHeC-A appears as natural complement and possible extension of ALICE physics programme.

QuickTime™ and a decompressor are needed to see this picture.

Fitting for the Gluon with LHeC F_2 and F_L (Gufanti, Rojo ...)

Including LHeC data in NNPDF DGLAP fit approach ...

... sizeable improvement in error on low x gluon when both LHeC F_2 & F_L data are included.

... but would DGLAP fits fail if non-linear effects present?

Can Parton Saturation be Established @ LHeC?

Simulated LHeC F_2 and F_L data based on a dipole model containing low x saturation (FS04-sat)...

... NNPDF (also HERA framework) DGLAP QCD fits cannot accommodate saturation effects if F_2 and F_L both fitted

Conclusion: clearly establishing non-linear effects needs a minimum of 2 observables ... next try F_2^c in place of F_L 35

What about eA?

<u>Common misconception:</u> Final states in DIS from nuclei are not significantly more complicated than in DIS from protons

- → scattered electron, current jet essentially identical
- \rightarrow target remnant more complicated, but very forward
- <u>A recent highlight: quantified impact of LHeC</u> <u>data on nuclear parton densities:</u>
- \rightarrow pseudo-data \rightarrow precision and kinematic range (Klein)

→ dipole based model;
 including shadowing
 derived from diffractive
 ep scattering (Armesto)
 → fits for nuclear
 PDFs in EPS09 (Eskola,
 Paukkunen)

Global NLO fit with LHeC pseudodata [from N. Armesto] included

Elastic Vector meson production in ep scattering

Dedicated Low x Linac-Ring Scenario

Dream scenario!!!

 J/ψ photoproduction double differentially in W and t, E_e =150 GeV 1° acceptance

Probing x ~ 3.10^{-6} at eff Q² ~ 2.5 GeV^2

c.f. GB-W model $x_s \sim 7.10^{-6}$ at Q² ~ 2.5 GeV²

39

Inclusive Diffraction

Additional variables ...

- x_{IP} = fractional momentum
 loss of proton
 (momentum fraction IP/p)
- b = x / x_{IP}
 (momentum fraction q / IP)

- \rightarrow Further sensitivity to saturation phenomena
- \rightarrow Diffractive parton densities in much increased range
- \rightarrow Sensitivity to rapidity gap survival issues
- → Can relate ep diffraction to eA shadowing
 ... Link between ep and eA for interpreting inclusive data

Signatures and Selection Methods at HERA

Worked well: The methods have very different systs! What is possible at LHeC?...

New region of Diffractive Masses No alternative to proton spectrometer to select high M_{*}

- `Proper' QCD (e.g. large E_T) with jets and charm accessible
- New diffractive channels ... beauty, W / Z / H(?) bosons
- Unfold quantum numbers / precisely measure new 1-4-states

SM and new physics at the high energy frontier

>SM Higgs production

>Leptoquarks

+ many other possibilities, e.g. excited leptons, anomalous single top

maduation ota

Higgs production at LHeC

Dominating process

Beware of backgrounds

150 GeV

QuickTime[™] and a decompressor are needed to see this picture.

 $\sigma{\sim}160~pb$ $_{\text{are n}}$ for mH=120 GeV

QuickTime™ and a decompressor are needed to see this picture.

+ many many others

Motivation: Measure $H \rightarrow bb$ coupling

Expected reconstr. dijet mass spectrum ^{Quest} ^{Eime M} and a decompressor signal ^{are needed to see this picture.} process only

Excellent b tagging needed to suppress large backgrounds

Summary

The LHeC has potential to completely unfold the partonic content of the proton: u,d, c,s, t,b for the first time and in an unprecedent kinematic range. This is based on inclusive NC, CC cross sections complemented by heavy quark identification.

Puzzles as u/d at large x or a strange-antistrange asymmetry will be solved.

Precision measurements are possible of xg (up to large x) and the beauty density which are of particular relevance for the LHC. The (almost) whole p structure which the LHC assumes to know will become accurately known.

Determination of fundamental SM constants: light quark axial and vector couplings to Z boson, W propagator mass, strong coupling constant α_s with permille level precision

Wealth of QCD tests with final states (not much discussed in this talk : Jets (study also photon structure), heavy flavours, prompt photons, other identified particles

Low x and diffractive physics with ep and eA: Measuring multiple observables (F2, F1, F2c, F2D, Vector mesons...) in ep and e46 can lead to a microscopic understanding of non-linear evolution, unitarity

Backup slides

The High Lumi (High Q²) Setup

(to be optimised)

L1 Low Q² SetUp \rightarrow High Q² SetUp

- Fwd/Bwd Tracking & EmC-Extensions, HaC-Insert-1 removed

- -Calo-Inserts in position
- -Strong Focussing Magnet installed

al suggestion (Paolo Gambino) for LHeC electroweak stu / fit with sin²(_w) as only free parameter; determinat as function of hard scale also interesting

W boson mass

M_W enters the fit through the **propagator** in the CC cross sections:

➔ also performed fit including LHeC CC, with M_w free, together with the PDFs (NC quark couplings fixed to SM)

Scenario D

Improved (wrt HERA) but not competitive

(although still interesting as a cross-check; space-like regime)

current world average (PDG 2008): M_W = 80.398 ± 0.025 GeV (0.03% total)

51

Proton PDFs

Gwenlan

Claire

scenario D

» <u>only</u> PDF parameters free (LHeC NC e[±]p included)

PDF uncertainties:

 NC e[±]p: direct constraints on quark densities; indirect on gluon via scaling violations

Proton PDFs

Claire Gwenlan

$Q^2 = 100 \text{ GeV}^2$

scenario D

 <u>only</u> PDF parameters free (LHeC NC and CC e[±]p included)

scenarios: A, B, C, D and E

	E _e (GeV)	Ρ	L (e-:e+)
А	20	0	2 (1:1)
В	50	0.4	200 (1:1)
С	50	0.4	4 (1:1)
D	100	0.9	30 (2:1)
E	150	0.9	18 (2:1)

(examples with several different Q² values are shown in backups)

* acceptance for scenario B has been taken to be: $10 < \theta < 170^{\circ}$

Higgs production and improvement due to LHeC pdfs Alessandro

Vicini

QuickTime[™] and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

Gluon - SM Higgs

QuickTime™ and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

E.Perez, DIS07

CTEQ Belyayev et al. JHEP 0601:069,2006

In SM Higgs production is gluon dominated

LHeC: huge x,Q² range for xg determination

WW to Higgs fusion has sizeable ep xsection

U.Klein B.Kniehl M.Kuze E.Perez QuickTime[™] and a decompressor are needed to see this picture.

56

Cross section is half at 70 GeV. NLO is about 2

Beauty - MSSM Higgs

QuickTime[™] and a

decompressor

are needed to see this picture.

In MSSM Higgs production is b dominated

First measurements of b at HERA can be turned to precision measurement of b-df.

LHeC: higher fraction of b, larger range, smaller beam spot, better Si detectors

Lets make use of it for LHeC predictions, e.g. for bW-> t

Quark-Gluon Dynamics - Diffraction and HFS (fwd jets)

QuickTime[™] and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture.

HERA

H.Jung, L.Loennblad, THERA study

Diffraction to accompany (SUSY) Higgs fwd physics at LHC

Understand multi-jet emission (unintegr. pdf's), tune MC's At HERA resolved effects mimic non-kt ordered emission Crucial measurements for QCD, and for QCD 5% the LHC

P.Newman, DIS07

Quark-Gluon Dynamics (saturation, GPDs)

QuickTime[™] and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture.

P.Newman, L.Favart, DIS08

LHeC opens phase space to discover saturation in DIS

J.Bartels at Divonne on low x theory

High luminosity, polarisation, accuracy for GPD's (DVCS)

QuickTime™ and a

J.Forshaw et al, DIS08

decompressor are needed to see this picture.

Divonne

Neutron Structure (ed eX)

(13) There are five color-singlet combinations of the deuteron wavefunction in QCD, only one of which is the standard proton-neutron state. The "hidden color" [13] components will lead to high multiplicity final states in deep inelastic electron-deuteron scattering.

crucial constraint on evolution (S-NS), improved s

In eA at the collider, test Gribovs relation between shadowing and diffraction, control nuclear effects at low Bjorken x to high accuracy

Density Amplification and Unitarity Limit

High density

$$\frac{g_{A} / \pi r_{A}^{2}}{g_{p} / \pi r_{p}^{2}} = A^{1/3} \frac{g_{A}}{Ag_{p}}$$

Unitarity

$$p / \pi r_p^2 \qquad Ag_p$$

 $xg(x, Q^2) \le \frac{1}{\pi N_c \alpha_s(Q^2)} Q^2 R^2 \simeq \frac{Q^2}{\alpha_s}$

Striking effects predicted:

black disc limit $F_2 \sim Q^2 \ln(1/x)$ Bi ~50% diffraction colour opacity, change of J/ (A) ...

Need eA collider data to determine nuclear parton distributions in the kinematic range of pA/AA collisions at the LHC

NuPECC EIC-LHeC Study group

Tullio Bressani, INFN, Torino Univ. Jens Jørgen Gaardhøje, Niels Bohr Inst. Günther Rosner, Glasgow Univ. Hans Ströher, FZ Juelich

QuickTime™ and a decompressor are needed to see this picture.

> QuickTime™ and a decompressor are needed to see this picture.

QuickTime[™] and a decompressor are needed to see this picture.

QuickTime™ and a decompressor are needed to see this picture.

Another Low x Detector Concept

Dipole magnets sweep out electrons and forward going hadrons scattered at very low angles